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Abstract—This paper explores the role of prosocial behaviour
when people team up with robots in a collaborative game that
presents a social dilemma similar to a public goods game. An
experiment was conducted with the proposed game in which each
participant joined a team with a prosocial robot and a selfish
robot. During 5 rounds of the game, each player chooses between
contributing to the team goal (cooperate) or contributing to his
individual goal (defect). The prosociality level of the robots only
affects their strategies to play the game, as one always cooperates
and the other always defects. We conducted a user study at
the office of a large corporation with 70 participants where we
manipulated the game result (winning or losing) in a between-
subjects design. Results revealed two important considerations:
(1) the prosocial robot was rated more positively in terms of
its social attributes than the selfish robot, regardless of the
game result; (2) the perception of competence, the responsibility
attribution (blame/credit), and the preference for a future partner
revealed significant differences only in the losing condition. These
results yield important concerns for the creation of robotic
partners, the understanding of group dynamics and, from a more
general perspective, the promotion of a prosocial society.

Index Terms—Groups, Social Dilemma, Public Goods Game,
Prosocial, Selfish

I. INTRODUCTION

A large part of what constitutes human activity is conducted
by teams rather than individuals on their own. Considering our
social nature as a species, perhaps it is not that surprising that
we excel at working together with others and often prefer to
do so. With the rapid advances that are being made in the
field of robotics, the fear that robots will eventually replace
entire teams of humans in certain activities is one that has re-
cently risen in popularity [1], [2]. However, a more optimistic
possibility is that teams that mix both humans and robots
in a successful manner will outperform exclusively robotic
teams. Moreover, it is also possible that people will come to
enjoy having robotic partners to collaborate with, assuming
that those robots not only lead to an increase in the team’s
productivity but also have adequate social skills (e.g., fairness
[3]) and are capable of fostering a sense of group trust and
identification [4]. Indeed, recent studies have already shown
that some behaviours such as expressing vulnerability [5] or
having group-based emotions [6] do create a positive impact
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on human-robot teams. It is important to further understand
and explore how people perceive robots when performing
a shared activity with them and how their behaviour and
disposition is affected by such collaboration.

In this article, we introduce a novel contribution to the
research on teamwork in Human-Robot Interaction (HRI)
and to the new area of Prosocial Computing. We present
an empirical analysis on single individuals forming a team
with two other fully autonomous robots. The analysis focuses
on understanding how people respond to a prosocial robotic
partner that always sacrifices its individual gains in favour
of the group compared to a selfish robotic partner that cares
about maximising its individual performance within the group.
This notion of prosocial machines has been recently discussed
in [7], where social robots can act as prosocial agents that
promote beneficial actions for others at the cost of one’s own
in order to create a prosocial society of humans and machines.

To conduct the aforementioned analysis we developed a
novel collaborative task that consists of a turn-based digital
game named For The Record. The name is inspired by the
game’s musical theme as it involves a group of players that
form a band together and then try to create and sell successful
records. Despite its theme, the core mechanics of the game
are not related to musical skills. Instead, the game works as a
variant of a public goods game, which is one of the standard
games that are used for analysing prosocial collaboration in
fields such as experimental economics [8]. Essentially, a public
goods game models a social dilemma in which there is a
tension between contributing to the benefit of the group or
acting selfishly and taking advantage of the other people that
are contributing. While the purely rational decision is to act
selfishly and free-ride, if everyone in the group does so, there
is no collaborative gain to be shared. Studies have shown that
when people play this game they usually contribute to the
group, although, in iterated sessions they tend to reduce their
contributions after witnessing others defecting [9].

The social dilemma that is present in For The Record is
one where players have essentially to decide between acting
in a prosocial manner by increasing the chances that the
band records a good album or acting in a selfish manner by
increasing the chances of maximising their individual profit
on the band’s successful records. One key distinction when
compared to a standard public goods game, is that the outcome
of both options is uncertain as players have to roll a certain
number of dice to determine the outcome of their actions.



For the purpose of conducting our study on human-robot
teamwork, the dice outcomes in For The Record were secretly
manipulated. The goal was to create two experimental groups
that participants would be randomly assigned to. Both groups
would have identical outcomes except in the last round. In one
group, the result is positive and the team wins, whereas in
the other group, the outcome is negative and consequentially
the team loses. In both groups, players play with the same
robotic partners, one uses a prosocial strategy and the other
uses a selfish strategy. Due to the fact that the latter robot is
constantly outperforming the former in the amount of profit
made, this could have led to the perception that it was the
most competent out of the two robots. The results did not
support this conclusion. In fact, the prosocial robot was seen
as significantly more competent in the losing condition and
there was no significant difference between the two in the
winning group. Moreover, as the prosocial robot played in a
more collaborative manner, we expected participants to choose
it as a future partner rather than the selfish robot. However,
this preference was only significant in the losing condition.

Overall, the obtained results suggest that, in a collaborative
context, the perception of competence is more associated to
how a robot contributes to the group rather than its individual
performance within the group. However, when the group
succeeds, the competence of a selfish robot is perceived
as being similar to the competence of a prosocial robot.
Additionally, another important result of the study is that
the success of the team had a significant positive effect on
group identification but not in group trust. To better understand
this result, we conducted a regression analysis and discovered
that the reported discomfort towards the selfish robot was a
significant predictive factor of group trust but not its perceived
competence as suggested in [10].

Finally, rather than having participants from the academia,
the study was conducted inside the offices of a large corpora-
tion in the energy sector. The employees who participated had
little exposure to social robotics and we took this opportunity
to ask their opinion on whether this type of robots can be a
net good for society. Surprisingly, a significant difference was
found between the losing and winning conditions.

II. RELATED WORK

Mixed human-robot teams can vary quite substantially in the
amount of autonomy that the robots possess. On one extreme,
there are teleoperated robots who have little autonomy as their
main purpose is to follow the instructions of a human con-
troller [11]. On the other extreme, robots are fully autonomous
with both shared and individual goals as is the case in the work
presented here. As discussed in [4], this notion of robots as
partners rather than tools requires that robots possess some
level of social intelligence [12].

One of the first studies that investigated how people respond
to robotic partners in a work-like setting was conducted by
Hinds et al. [13]. In this study, participants had to move around
a room and collect several objects with the assistance of either
a human confederate, a human-like robot or a machine-like

robot. The results showed that people were more likely to
feel responsible for the task when they interacted with the
machine-like robot that acted as a subordinate. Instead, when
the robot acted as a supervisor, participants were more likely
to blame it for any mistakes that occurred than when the
robot acted as a peer or subordinate. In our study, we also
conducted an analysis on how participants judged themselves
and their robotic partners with regard to who was most
responsible for the outcome of the collective task. However,
rather than manipulating the perceived status of the robots and
their appearance, we contrasted their decision-making strategy
during the task.

One crucial factor that is needed to enable successful
teamwork is a sense of group trust [14], [15]. This has led
roboticists to explore and find different types of behaviours
that robotic teammates can perform to increase how much
people trust them. For instance, having a robot making vul-
nerable statements has been found to increase the amount
of trust-related behaviours from its human partners. Such
effect was discovered in a study conducted with a team of
three individuals playing a collaborative digital game with a
NAO robot [5]. In the study, the robot expresses vulnerability
by admitting its mistakes to the group, which increases the
amount of times that people will also admit to their mistakes.
In a different study, group trust was shown to be higher when a
robot expressed group-based emotions to its partner compared
to a robot that expressed individual-based emotions instead
[6]. Although the dyadic concept of trust towards a robot has
been highly explored in the past years [10], the literature on
trust towards a group of humans and robots is still scarce [16].
In our study, results provide new insightful considerations on
the factors that impact the measure of group trust.

Social dilemmas have been a powerful tool to capture
the social aspects of human behaviour and the altruism and
prosociality of cooperation in Human-Computer Interaction
and more recently, in HRI. More than 20 years ago, Kiesler
et al. used a Prisoner’s Dilemma to compare collaboration
between a human and a computer with different human-
like communicative channels. The results revealed that their
best-liked computer partner was able to increase cooperation
compared to other uncommunicative partners mentioned in the
previous literature.

The later advances on social robotics led researchers to
explore other influencing factors on the cooperation during
Social Dilemmas. For instance, in the Ultimatum Game, par-
ticipants reported higher rejection scores towards a computer
opponent than towards a robot or a human opponent [17].
Another example by Terada & Takeuchi [18], inspired by the
work of de Melo et al. on virtual agents [19], revealed that
the display of emotions by a social robot can elicit altruistic
behaviour in the Ultimatum Game. Additionally, Sandoval
and collaborators investigated how humans perceive robots
that apply different strategies [20]. They showed the Tit-For-
Tat strategy is associated with the personality dimensions of
extroversion and agreeableness. This finding exposes insightful
concerns when designing behaviours and strategies for social



robots.
To the extent of our knowledge, Public Goods games are

another type of Social Dilemmas that have not yet been
explored in HRI. We believe this paper constitutes one of
the first investigations to explore this inherently collaborative
setting with important considerations for human-robot teams.

III. FOR THE RECORD

For The Record is as a N-person threshold game with un-
certain returns. In this game, there is a public good accessible
by each team member independently of her contribution. The
creation of such public good (their collective goal) requires
that the sum of all contributions exceeds a threshold that is
uncertain. Each player tries to maximise the collective goal by
contributing to the public good. At the same time, individuals
may opt to free ride on the efforts of others, while choosing
to invest on their own individual goals. The game is set
within an artistic context, in which players are musicians of
a band. Even if framed within a specific context, this class of
dilemmas is general enough to capture the non-linearity and
uncertain nature of many Human collective endeavours, from
group hunting to climate agreements. Introducing these type
of social dilemmas in HRI, especially in group interactions,
allows the analysis of prosocial collaboration and, in a more
general perspective, the creation of new approaches in which
robots can promote prosociality on humans.

The following description of For The Record considers
the artistic context attributed to the game when introduced
to the players. Each musician of the band has the goal of
“maximising his/her revenue by contributing to the creation
of successful albums and avoiding the collapse of the band”.

The game is composed by R rounds and each round is
the publication of an album on the market. Before detailing
the stages of the album creation, consider that each player j
has two distinct skills as a musician that are quantifiable in
discrete levels: the musical instrument (lij), and the marketing
(lmj). The instrument skill is used during the creation of an
album, where each player j sequentially has to evaluate her
individual performance by rolling lij dice of 6 faces. Letting
Df (n) denote the result of rolling n dice of f faces, the value
of an album sums the value of each musician’s performance,
according to the following expression:

Valbum =

N∑
i=1

D6(lij)

After creating each album, the market value determines
whether that album succeeds or fails. The market value is
calculated by rolling n dice of 20 faces. Additionally, For
The Record includes two difficulty levels when publishing an
album on the market, called national and international market
that differ according to the following expressions:

Vnational_market = D20(2)

Vinternational_market = D20(3)

Thereupon, each album is considered either a mega hit or a
fail according to the following expression:{

“MegaHit′′ if Valbum >= Vmarket

“Fail′′ if Valbum < Vmarket

Each round ends with the players receiving their individual
revenues. The revenue is 0 when the album has failed, how-
ever, in case of a mega hit, each player j has two options: to
receive a default amount of 3000 or to use his/her marketing
skill and receive according to the result of rolling lmj dice of
6 faces. This second option is only available if lmj > 0.

In the beginning of each round, each player has to upgrade
one of his/her skills by 1 point, between the instrument and
the marketing skill. On the one hand, by increasing the level
of the instrument, the player can roll one more dice during the
evaluation of his/her performance and, therefore, increases the
likelihood of producing a successful album. On the other hand,
by increasing the level of the marketing, the player can roll
one more dice during the revenue collection in case of a mega
hit and, therefore, increases the likelihood of maximising the
individual profit. In other words, each player has to choose
between to cooperate, by contributing to the collective goal,
or to defect, by contributing to his/her individual goal.

Another important rule is: during the R rounds, if the band
achieves a limit L of failed albums, the game ends and each
musician loses all the accumulated revenue. This is done in
order to stress the importance of collaborating.

IV. USER STUDY

We conducted a user study using the previously described
For The Record game. The number of players, N , was 3
and the selected setting was one human participant playing
together with two robotic players on a touch screen (Figure 1).
Furthermore, we set the number of rounds, R, to 5 and the
limit of failed albums, L, to 3. The band started to publish
albums on the national market and changed to the international
market on the 4th round. The initial values for the levels of
each skill were the same for all the players: 1 point in the
instrument skill (li = 1), and no points in the marketing skill
(lm = 0). Finally, players could upgrade their skills from the
2nd round on, which means they had 4 decisions to make
during the 5 rounds between improving their instrument skill
(cooperate) or their marketing skill (defect).

One particular factor that is likely to influence how people
perceive their robotic teammates is whether the team succeeds
or fails in the shared task. As identified in [21], people are
more sensitive to avoiding losses than to gains of equal mon-
etary amount. This well-known cognitive bias is referred to as
loss aversion. As a result, in this user study, we manipulated
the game result in a between-subjects design, which produced
two experimental conditions: winning or losing the game.
In order to achieve these two deterministic outcomes, we
scripted predefined orders for all the possible dice throws.
Not only could we guarantee all the participants played the
same number of rounds, we could also ensure that the dice
rolls of the each robot were the same in both conditions.



Fig. 1: This interaction was captured during a session of the
user study, where a participant is playing For The Record game
with the two robotic partners.

Consequently, during the 5 rounds, participants got a failure,
a victory, a failure, a victory and finally either a victory or a
failure according to the condition.

The robotic players differ on the strategies they apply to
play the game. One of them always defects by improving its
marketing skill in every round, which we call the defector,
while the other always cooperates by improving its instrument
skill in every round, which we call the cooperator. Neverthe-
less, their verbal and non-verbal behaviours remained similar
and we used two versions of the same embodiment for each
character, the EMYS robotic head [22]. Regarding their speech
acts, they encourage the team in the beginning of each album,
they comment extreme luck or bad luck on the dice rolls
for both themselves and the other players and, in the end of
each album, they comment the round result with an emotional
animation of either sadness or joy. The three game states that
were used to emphasise the difference between their distinct
game strategies were:
• The level up phase where each robot chooses to upgrade

either its instrument skill (cooperate) or its marketing
skill (defect) (e.g., Cooperator – “I will level up the
instrument.”, Defector – “I will improve the marketing.”);

• The dice roll that corresponds to the individual per-
formance for an album (e.g., Cooperator – “Wow, I
added [N] points!”, Defector – “[N] more points for our
album!”);

• The last decision of using or not the marketing skill to
receive the revenue in case of success (e.g., Cooperator
– “Here it comes the reward.”, Defector – “I will use my
[N] marketing skill points to see what I can get...”).

To avoid having these autonomous robots speaking at the same
time, the game engine randomly chooses which robot com-
ments each game state. Finally, their non-verbal behaviours
consists of gazing at: the other players when it is their turn;
the other robot if it is speaking; or the touch screen by default.

A. Hypotheses

The following hypotheses state our expectations towards the
differences on people’s perceptions, judgements and prefer-
ences between a prosocial and a selfish robotic partners after
teaming with them in a public goods game.

H1: The prosocial robot will be perceived more positively
in its social attributes than the selfish robot.
H2: The prosocial robot will be perceived as less com-
petent than the selfish robot.
H3: Group trust and group identification will be positively
associated with the group performance.
H4: When the team wins, the main responsible factor will
be the strategy of the prosocial robot.
H5: When the team loses, the main responsible factor
will be the strategy of the selfish robot.
H6: The prosocial robot will be preferred as a future
partner, rather than the selfish robot.

Our rationale behind these hypotheses is the following.
Concerning H1 and H6, we expect that participants see
the prosocial robot in a more positive light as it acts in a
fully collaborative manner, helping the team to succeed. The
expectation behind H2 lies in the fact that the selfish robot
will always be ahead in terms of task performance (profit
made). Additionally, in a study that asked participants to judge
the competence of people playing the prisoner’s dilemma, the
results showed that those who were defected against were
seen as less competent [23]. It is possible that the same effect
occurs in our study given that prosocial robot’s behaviour. The
reason for H3 is the aforementioned loss aversion bias [21] and
finally, H4 and H5 are based on the assumption that people
will correctly identify the main responsible actor behind the
team’s result.

B. Procedure

Participation in this study was individual and started with
a brief overview of each step. All the participants signed the
consent form and then proceeded with the experiment. One
researcher read the game rules one by one and answered
participant’s questions, while another researcher set up the
robots and the video camera. Then, they played a training
game without the robots to ensure the participant learned the
game and to clarify any final doubts. The training game had
a maximum of 5 rounds but the dice rolls were completely
random. After that, the researcher initiated the game with the
robots, alternating between conditions. Before the researchers
left the room, they emphasised the goal of the study is to
analyse their opinion of each robot and, therefore, they should
pay attention to which is which and also to their behaviours
during the game. Finally, after the interaction with the robots,
each participant answered the questionnaire and was greeted
by his/her participation.

C. Dependent Measures

The following dependent measures were used on the data
analysis: Competitiveness level of the participant using a
single-item question “How competitive do you evaluate your-
self?”; Group Identification [24] using the Portuguese adap-
tation [25] with the dimensions of Solidarity, Satisfaction and
In-Group Homogeneity; Group Trust [26]; Robotic Social
Attribute Scale (RoSAS) [27] using its three dimensions of
Warmth, Discomfort, and Competence towards each robot;



Choice of a Robotic Partner among the defector and the
cooperator for a hypothetical future game; Responsibility
(blame/credit) attribution of four different factors – random-
ness, participant’s strategy, defector’s strategy and cooperator’s
strategy – using single-item questions “The game result was
mainly due to (...)”. All the items in the questionnaire were
assessed in a 7-points scale ranging from 1 (“Definitely not
associated”) to 7 (“Definitely associated”) and the robots were
always mentioned by their names.

D. Sample

The study was conducted at a company facility in order
to collect a varied sample in terms of age, gender and
background. There was a total of 70 participants (35 per
experimental condition) with ages ranging from 22 to 63
(M = 34.6, SD = 11.557). Regarding gender, there were
32 females, 37 male, and 1 unknown.

V. RESULTS

A. Social Attributes of the Robots

To analyse the impact of the game result on the perception
of each robot, we used a Mixed analysis of variance (ANOVA)
where the within-subjects factor is the robotic character and
the between-subjects factor is the game result (winning or
losing).

Regarding the perception of warmth, there was a significant
main effect of the robotic character (Figure 2, F (1, 67) =
17.366, p < 0.001, r = 0.454) with the cooperator being rated
with higher values of warmth (M = 4.225, SD = 1.090) com-
pared to the defector (M = 3.513, SD = 0.977). However, the
main effect of the game result and the interaction between the
robotic character and the game result were not statistically
significant (F (1, 67) = 0.028, p = 0.869, r = 0.020 and
F (1, 67) = 0.013, p = 0.908, r = 0.014, respectively).

For the social attribute of discomfort, there was a main effect
of the robotic character (Figure 2, F (1, 67) = 30.982, p <
0.001, r = 0.562), with the defector being rated with higher
levels of discomfort (M = 2.895, SD = 1.302) than the
cooperator (M = 1.895, SD = 1.064). Again, we have not
found a significant main effect of the game result nor a
significant interaction between the robotic character and the
game result (F (1, 67) = 0.525, p = 0.471, r = 0.088 and
F (1, 67) = 1.141, p = 0.289, r = 0.129, respectively).

These results suggest that the distinct strategies adopted by
the robots affected the perception of the robot’s warmth and
the discomfort they felt regardless of the game result.

In terms of the perception of competence, there was a
significant main effect of the robotic character (F (1, 67) =
24.873, p < 0.001, r = 0.520), with the the cooperator being
rated with higher levels of competence (M = 4.790, SD =
1.111) than the defector (M = 3.907, SD = 1.073). Al-
though we did not find a significant effect of the game result
(F (1, 67) = 0.966, p = 0.329, r = 0.119), there was a signif-
icant interaction between the robotic character and the game
result (Figure 3, F (1, 67) = 4.095, p = 0.047, r = 0.240).
To understand this interaction, we compared the perception of
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Fig. 2: Main effect of the robotic partner on the social
attributes of warmth and discomfort.

competence attributed to each robot across the two possible
game results using a Wilcoxon Signed-Rank test. In the case
where the game result was winning, there was no significant
difference between the competence attributed to each robot
(Z = −1.859, p = 0.063, r = −0.319). However, in the
case where the game result was losing, there was a significant
difference between the competence attributed to each robot
(Z = −4.434, p < 0.001, r = −0.749), with the cooperator
being rated as more competent (M = 4.876, SD = 0.958)
than the defector (M = 3.624, SD = 0.896).
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Fig. 3: Interaction effect between the robotic partner and game
result on the attributed levels of competence.

Contrary to the previous social attributes, the competence
attributed to each robot was affected by the game result. Partic-
ipants have considered the cooperator as more competent only
in the losing condition. This result suggests the negative effect
of losing the game highlighted the difference in perceived
competence between the robots.

B. Group Measures

To analyse the two dependent measures related to the group
(Figure 4), i.e. group identification and group trust, between
the two possible game results, we used Mann-Whitney U
tests. Results showed a significant difference between the
levels of group identification according to the condition
(U = 404.5, Z = −2.445, p = 0.014, r = −0.292), with
participants that won the game reporting higher levels of group
identification (M = 4.267, SD = 1.346) than participants



who have lost the game (M = 3.466, SD = 1.182). Never-
theless, there was no significant difference between the levels
of group trust according to the game result (U = 535.5, Z =
−0.715, p = 0.474, r = −0.086).

G. Identification Trust
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Fig. 4: Effect of the game result on the attributed levels of
group identification and group trust.

These results revealed the group identification was affected
by the game result, winning or losing the game, as we have
predicted. However, the prediction about the measure of group
trust was not confirmed, suggesting that other factors might
have contributed to this outcome. Therefore, we conducted
an additional analysis to interpret these surprising findings, by
creating predictive models of both the group identification and
the group trust levels. We used Stepwise regressions with the
backward method to determine which variables could explain
most of the variance of group identification and group trust
levels. The initial seven predictor variables were the ones
related with individual and group perceptions of the team
members: defector’s warmth, defector’s competence, defec-
tor’s discomfort, cooperator’s warmth, cooperator’s compe-
tence, cooperator’s discomfort, and either group identification
or group trust.

Regarding the group identification level, we found in the
5th step that it can be significantly predicted (F (3, 65) =
33.016, p < 0.001, R2 = 0.604) by - 1.652 + 0.843 (group
trust) + 0.375 (defector’s competence) + 0.158 (cooperator’s
competence), where variables are assessed with 7-points likert
scales. Regarding the prediction of the group trust level, we
found in the 6th step that it can be significantly predicted
(F (2, 66) = 40.455, p < 0.001, R2 = 0.551) by 2.513 +
0.489 (group identification) - 0.174 (defector’s discomfort),
where variables are assessed with 7-points likert scales.

This exploratory analysis allowed us to understand that
although there is a correlation between group identification
and group trust, they were affected by other factors, after par-
tialling out the shared explanatory effect of the other variables.
Besides the strong relation of one another, group identification
can also be predicted from the competence attributed to each
of the team members, and group trust can also be predicted
from the discomfort attributed to the defector.

C. Responsibility (Blame / Credit) Attribution
To analyse the responsibility attribution of the game result

among the following four factors of (1) randomness, (2) par-
ticipant’s strategy, (3) defector’s strategy and (4) cooperator’s
strategy, we used Friedman’s ANOVA tests. In the winning
condition (Figure 5), we found no significant differences on
the credit attribution to the four factors (χ2(3) = 7.142, p =
0.067, r = 0.070). However, in the losing condition (Figure 6),
the blame attribution was significantly different to the four
possible factors (χ2(3) = 33.264, p < 0.001, r = 0.326).

Randomness

Participant's Strat.

Defector's Strat.

Cooperator's Strat.
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Fig. 5: Responsibility attributed to each factor in winning
condition (credit).
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Fig. 6: Responsibility attributed to each factor in losing
condition (blame).

To follow up this finding on the attribution of blame,
we conducted a post hoc analysis using Wilcoxon Ranks
tests. Moreover, we applied a Bonferroni correction and all
the effects are reported at a 0.008 level of significance.
It appeared that all the pairwise comparisons involving the
defector’s strategy were significant. In the losing condition,
participants attributed higher levels of blame to the defector’s
strategy (M = 5.429, SD = 1.685) when compared to
the randomness factor (M = 3.543, SD = 1.669;Z =
−3.421, p < 0.001, r = −0.578), to the participant’s strategy
(M = 3.265, SD = 1.377;Z = −4.586, p < 0.001, r =
−0.786), and to the cooperator’s strategy (M = 2.743, SD =



1.669;Z = −3.909, p < 0.001, r = −0.661). Regarding the
remaining pairwise comparisons, there was no significant dif-
ference between levels of blame attributed to the randomness
factor and to the participant’s strategy (Z = −0.745, p =
0.456, r = −0.128), nor between the randomness factor and
the cooperator’s strategy (Z = −2.201, p = 0.028, r =
−0.372), nor between the participant’s strategy and the coop-
erator’s strategy (Z = −1.284, p = 0.199, r = −0.220). These
results reveal that there was no clear main responsible factor
in the credit attribution of the winning outcome. However,
participants clearly identified the defector’s strategy as the
main cause of the losing outcome.

D. Choice of a Robotic Partner

To analyse the choice of a robotic partner among the
defector and the cooperator for a hypothetical future game,
we used a Chi-Square Goodness-of-Fit test. Results indicated
a significant difference in the preference for a robotic partner
(χ2(1) = 22.857, p < 0.001, r = 0.326), with the cooperator
being preferred (55 times, 78.6%) to the defector (15 times,
21.4%).

Additionally, we found a significant association between the
preferred robot and the game result (χ2(1) = 14.339, p <
0.001, φc = 0.453) and we have, therefore, also analysed pref-
erences across conditions (Figure 7). In the losing condition,
there was again a significant difference (χ2(1) = 31.114, p <
0.001, r = 0.889), with the cooperator being preferred (34
times, 97.1%) to the defector (1 time, 2.9%). However, in
the winning condition, no significant difference was found
(χ2(1) = 1.400, p = 0.237, r = 0.040), with the cooperator
being chosen 21 times (60.0%) and the defector 14 times
(40.0%).
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Fig. 7: Preferences for each robotic partner grouped by con-
ditions.

When breaking down the choices of the participants across
conditions, their preference is only clear when they lost the
game. These results suggest that the negative impact of losing
the game enhances the selfishness of the defector.

E. Strategy analysis

We analysed the playing strategies of the participants by
looking at the number of times they have defected among
their 4 decisions during the game. There were 8 participants

that have never defected (11.4%), 21 that have defected once
(30%), 33 that have defected twice (47.1%), 7 that have
defected 3 times (10%), and only 1 that always defected
(1.4%). Furthermore, out of the 33 that defected 2 times,
24 of them chose the strategy of “cooperate, defect, coop-
erate, and defect”. Additionally, we found a weak positive
correlation between the self-reported competitiveness level of
the participants and the number of times they have defected
(r(70) = 0.235, p = 0.05).

Finally, we did a correlation analysis to understand if the
participants’ perceptions of the robotic partners were associ-
ated with their competitiveness level or their playing strategy.
In the winning condition, we found a moderate negative
correlation between the rate of cooperation and the perceived
impact of the defector’s strategy (r = −0.379, n = 34, p =
0.027) and a moderate positive correlation between the rate
of cooperation and the perceived impact of the self strategy
(r = 0.426, n = 35, p = 0.011). No similar significant
correlations were found in the losing condition. This suggests
participants that cooperated more with team attributed more
credit to their own strategy and less credit to the defector’s
strategy.

F. Societal Impact

Due to the diversity of our sample, we asked participants, at
the end of the questionnaire, their agreement level on the sen-
tence “Social robots will be relevant to the society”, ranging
between 1 (“Totally disagree”) and 7 (“Totally agree”). Inter-
estingly, we found a significant difference on their answers
between conditions (U = 435, Z = −2.143, p = 0.032, r =
−0.256), revealing a higher acceptance of social robots when
they won the game (M = 5.457, SD = 1.651), compared to
when they lost the game (M = 4.686, SD = 1.676).

VI. DISCUSSION

According to H1, we have predicted that the prosocial robot
would be perceived more positively than the selfish robot. We
validated this hypothesis as the cooperator was rated as warmer
and caused less discomfort. Our results suggest that the display
of a prosocial strategy by the robotic partner enhanced the
perception of its social attributes.

We have also predicted in H2 that the selfish robot would
be perceived as more competent, which was not confirmed.
In fact, the opposite result was found, although only in the
losing condition. This hypothesis was based on the fact that the
defector uses the optimal strategy of maximising its profit on
the efforts of the others, commonly called the free rider. One
possible explanation is that participants construed the notion of
competence as one that necessitates the absence of exploitation
of others and, therefore, even though selfish acts are highly
profitable, they are deemed as incompetent. It is also the case
that, in the long run with multiple iterations of the game
being played, the higher return obtained by a selfish strategy
will diminish when considering the results obtained for the
future partner choice in the losing condition. Another possible
contributing factor is that participants were highly sensitive



to the risk involved in the uncertainty threshold of this game.
Consequently, when participants lost the game, the evidence
of a risky strategy became blameworthy and unreasonable.

Our results partially support H3 as group identification
was indeed positively associated with the performance of
the group, although the same association was not verified
for group trust. This surprising difference led us to analyse
more carefully which factors were predicting both measures.
According to our regression analysis, the best predictors of
group identification were the group trust and the competence
of each team member. Considering the discussion about H2,
the competence attributed to the defector was significantly
different across conditions. This can be the reason why there
was also a significant difference on the levels of group
identification.

On the other hand, the regression analysis for the group trust
revealed that its best predictors were group identification (as
they were highly correlated) and the discomfort attributed only
to the defector. As the discomfort attributed to the defector
remained similar in the two conditions, it seems to have
strongly influenced the level of trust to follow the same pattern.
Interestingly, literature on human-robot trust has previously
suggested that performance is one of the most influencing
factors to develop trust [10], which only occurred for group
identification rather than for group trust.

Our results do not support H4, which predicted that, when
the team wins, the main responsible factor would be the
strategy used by the prosocial robot. There was no main
responsible factor on the credit attribution of the winning
outcome. Only 8 participants (11%) used the same prosocial
strategy of cooperating 4 times and most participants defected
at least 2 times (58.5%). Although most participants were more
selfish than the prosocial robot, they attributed credit similarly
between their own strategy and prosocial strategy.

According to H5, we have predicted that when the team
loses, the main responsible factor would be considered the
strategy of the selfish robot. Our results supported this hypoth-
esis as the blame attribution to selfish robot were significantly
higher than all the other 3 factors: randomness, the strategy
of the participant, and the strategy of the prosocial robot.

Finally, H6 hypothesised that the prosocial robot would
be preferred as a future partner, which was only partially
verified from our results. The preference for the prosocial
robot was only clear in the losing condition. It seems that
their preferences of a future partner were aligned with the
responsibility attributions they mentioned and their perceptions
of competence. The negative impact of losing the game might
have stressed participants’ judgements, which was denoted by
significant differences on this choice.

VII. CONCLUSIONS AND FUTURE WORK

We are moving towards a society in which robots are
increasingly present and able to work with us. In this paper,
we explored the role of prosociality as a contributing factor to
establish cohesive collaborations with robots.

We conducted a user study where each participant formed
a team with two autonomous robots to play a public goods
game. In this type of social dilemmas, players have essentially
to decide between acting in a prosocial manner by opting for
the collaborative goal (cooperate) or acting in a selfish manner
by choosing the individual goal (defect). The two robotic
players used opposite strategies during the game: the selfish
robot always defected while the prosocial always cooperated.
Moreover, we manipulated the outcome of the game to either
result in winning or losing.

Results showed that a prosocial partner can be perceived
more positively in terms of its social attributes regardless of
the game result, which generally reveals the importance of
group-oriented decisions by social robots. Additionally, the
differences between the participants’ perception of compe-
tence, responsibility attribution and preferred robot were only
significant when the participants lost the game. In particular,
the portrayal of selfish behaviours by a robotic partner was
negatively identified only when the performance of the team
was compromised. More broadly, loosing outcomes seem to
increase the people’s awareness of what decisions players took
throughout the game, and what impacts such decisions have
for the success of the group.

This paper also shed some light on the development of trust
and group identification towards mixed human-robot teams.
In fact, many authors working on this topic have focused on
trust, given that it is a critical element for group collaboration.
Interestingly, in this study we found that the success of the
team produced an increase in group identification but not
in group trust. This has a broad implication that suggests
these two measures can vary independently of one another.
Furthermore, we provided some evidence on which social
attributes of a robotic team member play a role on the levels
of trust and group identification. These findings contribute
not only to the understanding of these measures, but also to
enhance human-robot collaboration.

An important consideration of our user study was the fact
it took place at the facility of a large company and, therefore,
our sample is more balanced in terms of ages and backgrounds
than the most commonly reported samples that consist of
young adults from universities [28].

As future work, it would be interesting to analyse the
influence of the embodiment on the current findings, by
replicating this user study with non-embodied agents. We
would also like to explore the ingroup/outgroup relations of
humans and robots, similar to what was done in [29], [30], by
for instance changing the proportion between the number of
human and robotic team players. Another aspect we are keen
to work on is the impact of using different game strategies
that are neither purely prosocial nor purely selfish. Finally, it
would also be interesting to analyse the inclusion of additional
social mechanisms such as punishments. This could be done
either by (1) approaching the notion of altruistic punishment
or (2) implying punishment in the agents’ social behaviours,
similar to [31].
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