A Social Robot as a Card Game Player

Filipa Correia, Patrícia Alves-Oliveira, Tiago Ribeiro, Francisco S. Melo, Ana Paiva

Instituto Superior Técnico, Lisbon University
Goals

A social robotic player for a card game:

- Ability to play
- Perform social behaviours
The **Sueca** Card Game

- Portuguese trick-taking card game
- 4 players
- Team game
- The robot will partner a human
Social Robotic Player

- Game Module
- Social Module
Game Module

(1) Create a benchmark for further evaluation
(2) Apply PIMC to the Sueca
(3) Enhancing considering our requirements
Game Module

(1) Create a benchmark for further evaluation

- Rule-based Player (RbP)
Algorithm 1 PIMC search pseudo-code.

1: procedure PIMC(InfoSet I, int N)
2: for all $m \in \text{Moves}(I)$ do
3: $val[m] = 0$
4: for all $i \in \{1..N\}$ do
5: $x = \text{Sample}(I)$
6: for all $m \in \text{Moves}(I)$ do
7: $val[m] += \text{PerfectInfoValue}(x, m)$
8: return $\arg\max_m \{val[m]\}$
Game Module

(2) Applying PIMC to the Sueca domain - Sample

- It does not consider already played cards

- It does not assign suits that players do not have (using a Constraint Satisfaction Problem (CSP))
Game Module

(2) Applying PIMC to the Sueca domain - **Search**

- MinMax algorithm
- Costly in early plays of the game
- Cannot meet the time constraint of 2 seconds!
(3) Enhancing considering our requirements

- Hybrid Player (HP)
Game Module

(3) Enhancing considering our requirements
- Hybrid Player

Rule-based procedure
Non-deterministic!
Game Module

(3) Enhancing considering our requirements
- Hybrid Player

Rule-based procedure
Non-deterministic!

Should the Hybrid Player compute more often each sampled distribution?
Game Module

N - number of sampled distributions
M - number of computed game trees for each sampled distribution
N x M - total number of computed game trees

Average points and winning rate of HP+RbP VS 2RbP in 1000 independent games

<table>
<thead>
<tr>
<th></th>
<th>N = 1</th>
<th>N = 5</th>
<th>N = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = 1</td>
<td>58.8 ± 26.8, 47.3%</td>
<td>61.2 ± 26.6, 52.4%</td>
<td>61.4 ± 26.2, 54.2%</td>
</tr>
<tr>
<td>M = 5</td>
<td>59.4 ± 26.5, 50.3%</td>
<td>62.8 ± 25.8, 55.8%</td>
<td>62.3 ± 25.6, 54.6%</td>
</tr>
<tr>
<td>M = 10</td>
<td>61.4 ± 25.7, 52.9%</td>
<td>63.1 ± 25.5, 56%</td>
<td>63.2 ± 25.9, 57%</td>
</tr>
</tbody>
</table>
Game Module

\{M = 10, N = 5\} with \(M \times N = 50\)

VS

\{M = 5, N = 10\} with \(M \times N = 50\)

=

Increasing \(M\) instead achieves better scores
+ reduces computational time!

<table>
<thead>
<tr>
<th></th>
<th>N = 1</th>
<th>N = 5</th>
<th>N = 10</th>
</tr>
</thead>
</table>
| M = 1 | 58,8 ± 26,8
 | 47,3% | 61,2 ± 26,6
 | 52,4% | 61,4 ± 26,2
 | 54,2% |
| M = 5 | 59,4 ± 26,5
 | 50,3% | 62,8 ± 25,8
 | 55,8% | 62,3 ± 25,6
 | 54,6% |
| M = 10 | 61,4 ± 25,7
 | 52,9% | 63,1 ± 25,5
 | 56% | 63,2 ± 25,9
 | 57% |
Game Module

Winner!

<table>
<thead>
<tr>
<th>M</th>
<th>N = 1</th>
<th>N = 5</th>
<th>N = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>58.8 ± 26.8</td>
<td>61.2 ± 26.6</td>
<td>61.4 ± 26.2</td>
</tr>
<tr>
<td>47.3%</td>
<td>52.4%</td>
<td>54.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59.4 ± 26.5</td>
<td>62.8 ± 25.8</td>
<td>62.3 ± 25.6</td>
</tr>
<tr>
<td>50.3%</td>
<td>55.8%</td>
<td>54.6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>61.4 ± 25.7</td>
<td>63.1 ± 25.5</td>
<td>63.2 ± 25.9</td>
</tr>
<tr>
<td>52.9%</td>
<td>56.0%</td>
<td>57.0%</td>
<td></td>
</tr>
</tbody>
</table>
Social Module

- User-centred study to analyse how (and when) people behave during a game
- Set of verbal utterances
- Game state triggering behaviours
- People react emotionally

➡ We used FAtiMA emotional agent architecture
Social Module

- We define a set of appraisal rules according to the goal of “winning the game”

 ➡ Produces adequate emotions as a result of game events (e.g. gloating, resentment, happy for, pity)

Play(player, move, trick score of the agent)

Play(P2,10,21) -> Happy for P2 (partner)

Play(P3,11,14) -> Gloat over P3 (opponent)

Play(P3,10,-14) -> Resentment at P3 (opponent)
Building a social robot as a game companion in a card game

Filipa Correia, Tiago Ribeiro, Patrícia Alves-Oliveira, Nuno Maia, Francisco Melo and Ana Paiva
INESC-ID & Instituto Superior Técnico
Lisbon, Portugal

ACM/IEEE Human-Robot Interaction 2016 Videos
March 7-10, 2016
New Zealand
Evaluation

- User study
 - Emys robot
 - 60 participants
 (10 females; $M_{age}=24.31 \pm 3.85$)
Evaluation

- User study

- Winning rate (objective measure)

- Human-Robot Trust Questionnaire towards partner before and after playing (subjective measure)
Evaluation

- Pre- and post-levels of trust were significantly different (Mixed ANOVA, \(p = 0.03 \))
Evaluation

- Pre- and post-levels of trust according to the partner type (human or robot) were not significantly different (Mixed ANOVA, p = 0.65)

➡ The variation of trust was not different between participants that had a human or robotic partner
Evaluation

- Post-levels of trust according to the partner type (human or robot) were significantly different (Welch test, $p < 0.01$)
Evaluation

- Robot team achieved a winning rate of 60%
- The RbP and human players from the user study had similar performances
Conclusions

- High trust levels towards the robot
- However… people trust more on the human partners
- Trust is complex construct
- Accomplished the goals
Thank you!