Group-based Emotions in Teams of Humans and Robots

Filipa Correia, Samuel Mascarenhas, Rui Prada, Francisco S. Melo & Ana Paiva

What are Group-based Emotions?

No attribution of membership

Individual-based Emotions

Attribution of membership to that social group

Event is relevant for a social group

Group-based Emotions

Motivation to analyse GbE in HRI

Motivation

- Intergroup interactions
- Cohesion of the social group
- · Trust and Group Identification may lead to positive team performance

Based on the psychological model of GbE [1]


```
while true do
  self \leftarrow Robot.Name
  e \leftarrow Sensors.PerceiveNewEvent()
  SG \leftarrow ContextManager.GetSalientSocialGroups()
  if SG \neq \emptyset then
     g \leftarrow IdentityManager.SelfCategorisation(SG, self)
     if e.ResponsibleAgent \in g then
        e.ResponsibleAgent \leftarrow g.Name
        self \leftarrow g.Name
     end if
  end if
  AV \leftarrow Appraisal.DetermineVariables(e)
  E \leftarrow Appraisal.GenerateEmotions(AV, self)
  se \leftarrow StrongestEmotion(E)
  for all c \in Actuators.GetEmotionChannels() do
     Express(se, c)
  end for
end while
```



```
while true do
  self \leftarrow Robot.Name
  e \leftarrow Sensors.PerceiveNewEvent()
  SG \leftarrow ContextManager.GetSalientSocialGroups()
  if SG \neq \emptyset then
     g \leftarrow IdentityManager.SelfCategorisation(SG, self)
     if e.ResponsibleAgent \in g then
        e.ResponsibleAgent \leftarrow g.Name
        self \leftarrow g.Name
     end if
  end if
  AV \leftarrow Appraisal.DetermineVariables(e)
  E \leftarrow Appraisal.GenerateEmotions(AV, self)
  se \leftarrow StrongestEmotion(E)
  for all c \in Actuators.GetEmotionChannels() do
     Express(se, c)
  end for
end while
```



```
while true do
  self \leftarrow Robot.Name
  e \leftarrow Sensors.PerceiveNewEvent()
  SG \leftarrow ContextManager.GetSalientSocialGroups()
  if SG \neq \emptyset then
     g \leftarrow IdentityManager.SelfCategorisation(SG, self)
     if e.ResponsibleAgent \in g then
       e.ResponsibleAgent \leftarrow g.Name
       self \leftarrow g.Name
     end if
  end if
  AV \leftarrow Appraisal.DetermineVariables(e)
  E \leftarrow Appraisal.GenerateEmotions(AV, self)
  se \leftarrow StrongestEmotion(E)
  for all c \in Actuators.GetEmotionChannels() do
     Express(se, c)
  end for
end while
```



```
while true do
  self \leftarrow Robot.Name
  e \leftarrow Sensors.PerceiveNewEvent()
  SG \leftarrow ContextManager.GetSalientSocialGroups()
  if SG \neq \emptyset then
     g \leftarrow IdentityManager.SelfCategorisation(SG, self)
     if e.ResponsibleAgent \in g then
        e.ResponsibleAgent \leftarrow g.Name
        self \leftarrow g.Name
     end if
  end if
  AV \leftarrow Appraisal.DetermineVariables(e)
  E \leftarrow Appraisal.GenerateEmotions(AV, self)
  se \leftarrow StrongestEmotion(E)
  for all c \in Actuators.GetEmotionChannels() do
     Express(se, c)
  end for
end while
```



```
while true do
  self \leftarrow Robot.Name
  e \leftarrow Sensors.PerceiveNewEvent()
  SG \leftarrow ContextManager.GetSalientSocialGroups()
  if SG \neq \emptyset then
     g \leftarrow IdentityManager.SelfCategorisation(SG, self)
     if e.ResponsibleAgent \in g then
        e.ResponsibleAgent \leftarrow g.Name
        self \leftarrow g.Name
     end if
  end if
  AV \leftarrow Appraisal.DetermineVariables(e)
  E \leftarrow Appraisal.GenerateEmotions(AV, self)
  se \leftarrow StrongestEmotion(E)
  for all c \in Actuators.GetEmotionChannels() do
     Express(se, c)
  end for
end while
```

Scenario

Card game scenario

- Trick-taking card game
- 2 adversarial teams
- Winning team is the one with more points
 - In-group
 - Out-group

Hypotheses

Hypotheses

- <u>H1</u>: Participants will have a **stronger Group**Identification with a robotic partner that expresses GbE.
- <u>H2</u>: Participants will have a more **positive perception** of a robotic partner that expresses GbE.
- H3: Participants will have a higher degree of Group Trust with a robotic partner that expresses GbE.

Applying the model

How?

Group-based Emotions

Individual-based Emotions

How?

Group-based Emotions

Assuming the robot is P1 and {P1, P3} ∈ T1

Individual-based Emotions

Assuming the robot is P1 and {P1, P3} ∈ T1

How?

Group-based Emotions

Assuming the robot is P1 and {P1, P3} ∈ T1

Event(P3,IncreasePoints(Trick,11))

Individual-based Emotions

Assuming the robot is P1 and {P1, P3} ∈ T1

Event(P3,IncreasePoints(Trick,11))

How?

Group-based Emotions

Assuming the robot is P1 and {P1, P3} ∈ T1

Event(P3,IncreasePoints(Trick,11))

{T1,T2} ← ContextManager.GetSalientSocialGroups()T1 ← IdentityManager.SelfCategorisation(SG, self)

If P3 ∈ T1

Then,

- Event(**T1**,IncreasePoints(Trick,11))
- Self ← **T1**

Assuming the robot is P1 and {P1, P3} ∈ T1

Event(P3,IncreasePoints(Trick,11))

How?

Assuming the robot is P1 and {P1, P3} ∈ T1

Event(P3,IncreasePoints(Trick,11))

How?

Assuming the robot is P1 and {P1, P3} ∈ T1

Event(P3,IncreasePoints(Trick,11))

Appraisal

Admiration*

What are their Emotional Responses?

Using the verbal utterances!

Group-based Emotions

Individual-based Emotions

Ex: Partner increases the points

—"We are the best!" (Group Pride)

— "I am impressed with your move!" (Admiration)

What are their Emotional Responses?

Using the verbal utterances!

Group-based Emotions

Individual-based Emotions

What are their Emotional Responses?

Using the physical posture!

User Study

Measures

Towards the robotic partner:

- Group Identification [1] (Satisfaction, Solidarity)
- Godspeed [2] (Anthropomorphism, Animacy, Likeability, Perceived Intelligence)
- Group trust [3]

[1] Leach, Colin Wayne, et al. "Group-level self-definition and self-investment: a hierarchical (multicomponent) model of in-group identification." *Journal of personality and social psychology* 95.1 (2008): 144.

[2] Bartneck, Christoph, et al. "Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots." *International journal of social robotics* 1.1 (2009): 71-81.

[3] Allen, Kathleen, Richard Bergin, and Kenneth Pickar. "Exploring trust, group satisfaction, and performance in geographically dispersed and co-located university technology commercialization teams." Venture Well. Proceedings of Open, the Annual Conference. National Collegiate Inventors & Innovators Alliance, 2004.

Procedure

- Briefing and consent form
- Explain the rules and play an example game (without the robots)
- Random draw to assign the robotic partner
- · 3 games with the robots
- Questionnaire
- Random draw of a cinema ticket
- Debriefing

45 minutes

Sample

- 48 university students (24 sessions)
 - 33 males and 15 females
 - [19 33] years old $(M = 25.02 \pm 2.98)$

Results

- Game scores were balanced
 - Team GbE won 10 times, lost 11 and tied 3
 - Team IbE won 11 times, lost 10 and tied 3
- The number of expressed emotions between robots was balanced
 - However, there were more positive emotions than negative emotions

Results - Group Identification

• Participants had **significantly higher** levels (U = 175.5, p = 0.02, r = 0.335) of **Group Identification** towards the robotic partner with GbE than towards the robotic partner with IbE.

Results - Group Identification

• There was a non-significant correlation (r_s = 0.153, p = 0.30) between the number of points of the team and the level of **Group Identification**

Results - Group Trust

• Participants had **significantly higher** levels (U = 148, p < 0.01, r = 0.417) of **Group Trust** towards the robotic partner with GbE than towards the robotic partner with IbE.

Results - Group Trust

• There was a non-significant correlation (r_s = 0.158, p = 0.28) between the number of points of the team and the level of **Group Trust**.

Results - Perception of the Robot

- · Results showed no significant diferences in:
 - Perceived Intelligence (U = 200, p = 0.07),
 - Animacy (U = 275, p = 0.79),
 - Anthropomorphism (U = 276, p = 0.80).

 Participants attributed significantly higher levels of Likeability to robotic partner with GbE than the robotic partner with IbE.

Results - Perception of the Robot

- There was a strong, positive, and statistically significant correlation between Group Identification and:
 - Anthropomorphism ($r_s = 0.529$, p < 0.01)
 - Animacy $(r_s = 0.318, p = 0.03)$
 - Likeability $(r_s = 0.606, p < 0.01)$
 - Perceived Intelligence (r_s= 0.595, p < 0.01)

• <u>H1</u>: Participants will have a **stronger Group**Identification with a robotic partner that expresses GbE.

H1: Participants will have a stronger Group Identification with a robotic partner that expresses GbE.

• <u>H2</u>: Participants will have a more **positive perception** of a robotic partner that expresses GbE.

H1: Participants will have a stronger Group Identification with a robotic partner that expresses GbE.

H2: Participants will have a more positive perception of a robotic partner that expresses GbE.

- H1: Participants will have a stronger Group Identification with a robotic partner that expresses GbE.
- H2: Participants will have a more positive perception of a robotic partner that expresses GbE.
 - <u>H3</u>: Participants will have a **higher degree of Group**Trust with a robotic partner that has GbE.

- H1: Participants will have a stronger Group Identification with a robotic partner that expresses GbE.
- H2: Participants will have a more positive perception of a robotic partner that expresses GbE.
- H3: Participants will have a higher degree of Group Trust with a robotic partner that has GbE.

Conclusions

Conclusions

- We defined a model of GbE for social robotic partners
- User study with 2 fully autonomous robots using the model to generate GbE or IbE
- Our findings can improve interactions and create effective collaborations in HRI
- GbE revealed a promising role on the design of social robotic partners

Thank you!

Questions?

