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ABSTRACT

With the growing interest on human-robot collaboration, the de-
velopment of robotic partners that we can trust has to consider
the impact of error situations. In particular, human-robot trust has
been pointed as mainly affected by the performance of the robot
and as such, we believe that in a collaborative setting, trust towards
a robotic partner may be compromised after a faulty behaviour.
This paper contributes to a user study exploring how a technical
failure of an autonomous social robot affects trust during a collabo-
rative scenario, where participants play the Tangram game in turns
with the robot. More precisely, in a 2x2 (plus control) experiment
we investigated 2 different recovery strategies, justify the failure
or ignore the failure, after 2 different consequences of the failure,
compromising or not the collaborative task. Overall, the results in-
dicate that a faulty robot is perceived significantly less trustworthy.
However, the recovery strategy of justifying the failure was able to
mitigate the negative impact of the failure when the consequence
was less severe. We also found an interaction effect between the
two factors considered. These findings raise new implications for
the development of reliable and trustworthy robots in human-robot
collaboration.
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1 INTRODUCTION

Robots, like any other machines, are susceptible to fail or present
some degree of error. We are all familiar with a robot that suddenly
halts, starts repeating itself, says something out of context, and
many other situations. Depending on the nature of the task and the
purpose of the robot, the impact of failures can range from amusing
to highly dangerous. However, even in low-risk situations, such as
a conversational, entertainment or companion robot, failures may
have a significant adverse effect on trust, user engagement and even
willingness to interact with the robot in the future. From a perfor-
mance standpoint, if robots are able to understand and recover from
their failures automatically, they will be more efficient and reliable.
But as robots become more social and interact with humans in vari-
ous forms, the expectations on how robots handle such failures may
go beyond their capacity for autonomous recovery. For instance,
in collaborative tasks where robots are interacting with humans,
the robot’s behaviour should also address the social implications of
their failures upon others. If we expect others to justify and explain
their failures to us, it is likely that we will expect social robots to
do so as well. This work sets out to understand how a robot can
recover from a failure in order to mitigate its possible negative
social effects. In particular, if a robot justifies the failure, will it
mitigate the effects of it? By addressing these questions, this work
contributes to the design of social agents that can autonomously
overcome error situations in a more appropriate manner.
Literature related with faulty or erroneous behaviours in social
agents and robots is still very recent. As a result, the range of ef-
fects that is caused by such behaviours is not yet fully understood
or agreed upon. For instance, Salem et al. found that incongruent
“speech-gestures” lead the robot to be perceived as more anthropo-
morphic, human-like, and likeable when compared to congruent
“speech-gestures” [14]. Conversely, Mirnig et al. found no significant
difference between anthropomorphism or perceived intelligence
between the faulty and the flawless robots, although the faulty
robot was rated with higher levels of likeability [8]. In addition,
there are also findings reporting negative effects on the perception



of a robot after faulty behaviours, as shown by Ragni et al. [10] or
Salem et al. [15]. Nonetheless, the controversy of previous findings
suggests that the perception of a robot after an error situation may
be influenced by many factors, such as the type of task, the type of
error, or the severity of the error. Naturally, it extends the scope of
unexplored issues regarding the topic of faulty behaviours in social
robots.

In addition, some researchers began to explore mechanisms to
cope with faulty behaviours and, possibly, mitigate their negative
effects, known as recovery strategies. The previously analysed re-
covery strategies [2, 7] were developed for robots in service tasks
and were tested through online surveys where participants did not
directly interact with the faulty robots. Moreover, if the perceptions
of faulty robots seem to be influenced by several factors, the miti-
gation strategies must also be explored for different levels of the
same factors.

Yet, in spite of these different findings, it is still unclear if justi-
fication of a fault by the robotic agent will have a positive impact
in the people interacting with it. That is, if the robot makes the
problem/fault transparent to the user and justifies it, will it mitigate
the perception of severity of that fault? And the trust?

In this paper, we contribute to this emerging field by exploring
the impact of fault justification as a recovery strategy, which, to our
knowledge, has not yet been explored. Our contribution consists of
a user study that was conducted with an autonomous social robot
collaborating with participants in a shared task, a puzzle game. At
a certain point, the robot has a technical failure during the task and,
depending on the experimental condition, adopts a different social
recovery strategy.

The motivation behind analysing trust is the fact that it is one of
the most critical and essential elements for an effective collaboration
between humans and agents [6]. Moreover, according to Hancock
et al., trust is strongly influenced by the agent’s performance and
other attributes; such as transparency.

Overall, the obtained results indicate that the recovery strategy
of justifying the failure was able to mitigate the negative impact
of the failure, but only when the consequence of the failure was
less severe (when the failure did not compromise the task). That
is, in scenarios where the failure is not too severe, a strategy of
justifying a failure to the users can mitigate the overall trust in the
robot. The implications of these findings are particularly relevant
to the current growing interest in collaboration between humans
and agents, or in tasks where agents act as peers or constitute a
team with humans.

This paper is organised as follows: first we will discuss the work
being done in the Human-Robot Interaction (HRI) community con-
cerning failures and their impact on humans; then, a definition of
trust in HRI is given; afterwards, our scenario is presented in detail,
followed by a description of the user study that was conducted
using the previous scenario; the obtained results are then presented
and discussed in detail; finally, we present our conclusions and
discuss the implications of this work for the community.

2 RELATED WORK

The study of error situations in HRI is still new. Currently, there are
three broad questions that are getting researchers’ attention in this

area: (1) How can a robot automatically perceive error situations?
(2) How do error situations influence the interaction and human
perception? (3) Which strategies can be adopted to mitigate the
effects of a failure?

Giuliani et al. [3] have postulated that robots must be able to
recognise social signals during error situations. Through a video
analysis in different user studies, the authors have evaluated the
social signals humans perform related to error situations during
human-robot interaction. Their analysis shows that participants
are prone to, for instance, using head movements and laugh when
the error situation occurs but are not prone to using hand gestures.
Another relevant consideration from their video analysis is that they
could classify error situations in two distinct ways, namely, social
norm violations and technical failures. The former type corresponds
to error situations that provide the wrong social signals or produce
a discrepancy in the social script. Differently, the latter type refers
to failed attempts to perform an action.

Salem et al. have analysed the effects of robot gestures on the per-
ception of the robot [14]. In one of their conditions, the erroneous
behaviour of the robot is associated to incongruent multimodal
behaviours (speech and gestures). Their findings revealed that the
anthropomorphic perceptions and the mental models of the robots
can indeed be influenced by the communicative non-verbal be-
haviours. Interestingly, the incongruent multimodal behaviour was
rated with greater humanlikeness and likeability when compared
to the congruent multimodal behaviour.

In another user study, Salem et al. have manipulated a robot to
display either correct or faulty behaviours in the beginning of the
interaction, and then ask unusual requests, e.g. dispose letter, pour
orange juice, disclose information [15]. Although people perceived
the faulty robot as less humanlike, reliable and trustworthy, the
manipulation had no impact on their willingness to comply with
the unusual requests. Similar findings by Robinette et al. reported
a tendency to follow and overtrust a robot in an emergency evacu-
ation scenario, regardless of the robot having previously displayed
faulty behaviours or not [13].

During a competitive scenario by Ragni et al., a robot was ma-
nipulated to either produce some occasional mistakes and display
limited memory, or to always perform correctly [10]. Although the
erroneous robot was perceived as less intelligent and reliable, par-
ticipants perceived the interaction as easier and more positive. An
interesting result was that people interacting with the erroneous
robot presented a lower performance of executing the task. The
authors attributed this result to a calibration of performance set by
the perceived performance of the robot.

However, perceptions of faulty behaviour are not consistent
and, for instance, Mirnig et al. reported no significant differences
in anthropomorphism nor in the perceived intelligence between
a social robot performing correctly and faulty [8]. The authors
attributed this result to the fact that the error was non-task related.
Nevertheless, participants liked the faulty robot significantly more
than the flawless robot, which points toward the idea that a faulty
social robot can actually be perceived as more natural.

One last example where the interaction and perception of a faulty
robot was investigated in a slightly different scope is by Sarkar et al.,
who conducted an experiment with a collaborative manufacturing
task where the robot performed faulty or not [16]. Their results



show that the faulty condition compared to the non-faulty one did
not have a significant effect on the social perceptions of the robot
nor in their performance in the task. The authors attribute this
result to the nature of the task, which was difficult and demanding.

Regarding the possible strategies that robots can employ after
an error situation, there are two online user studies reporting that
recovery strategies can indeed mitigate the negative impacts of
robotic failures. Lee et al. showed that the apology strategy was
most effective to mitigate perceptions of competence, closeness and
likeability of a service robot [7]. However, the authors also showed
that people’s orientation to services may lead to different effects of
the observed recovery strategies.

In a similar online survey, Brooks et al. explored people’s re-
actions to failures in autonomous robots [2], namely a vacuum
cleaner and a self-driving taxi, by manipulating four variables:
context risk, failure severity, task support and human support. Par-
ticipants’ perceptions of an erroneous robot became less negative
when it deployed a mitigation strategy, either by prompting task
support, human support or both. However, the authors reported
an interesting but non-significant tendency showing a preference
for both task and human support in high severity situations, and a
preference for only task support in low severity situations. Gener-
ally, Brooks et al. contributed to previous results of Lee et al. [7]
with the notion that the amount the strategy influenced people’s
reactions depend on the type of task, the severity of the failure and
the risk of the failure.

Overall, the studies previously mentioned reveal that there are
several factors influencing the way people perceive a faulty robot,
as severity of the erroneous behaviour [14] or the type of the task
and context [10, 13, 16]. Moreover, there seems to be a degree to
which faults are accepted, even considered as more positive and
more likeable [8, 10] and can even calibrate human performance to
regulate the trade-off between performance and satisfaction during
the interaction [4, 10]. Nevertheless, even when failures negatively
influence the perception of the robot or the interaction, there are
also findings reporting the effectiveness of recovery strategies for
mitigating the negative impact of failures [2, 7].

One of the disadvantages of conducting an online survey for the
perception of a faulty robot is that participants act only as observers.
As such, they are not directly affected by the robot’s failures. Our
work avoids this issue as the participants in our study rate their
perceptions of the faulty robot after interacting with it as a peer and
being directly affected by it’s faulty behaviour. Another distinguish-
ing aspect is that we look at the mitigation effects of an unexplored
recovery strategy, namely, the robot justifying the fault. Finally, our
robot acts autonomously and simulates an autonomous recovery of
a technical failure, which differs from failing to accomplish a goal
[7] or presenting erroneous behaviours during the interaction [15].

3 TRUST IN HRI

Hancock and collaborators have defined human-robot trust as “the
reliance by an agent that actions prejudicial to their well-being
will not be undertaken by influential others” [5]. In other words,
one can trust a robot if its actions support both its own and the
person’s intentions. Nevertheless, in order to understand the de-
velopment of this construct, Hancock et al. have reviewed factors

affecting human-robot trust using a meta-analytic method and
have identified three main elements: human-related, robot-related
and environmental [6]. Human-related factors may include, for in-
stance, prior experience, situation awareness and personality traits.
While robot-related factors, which have the strongest currently
known influence on trust, involve characteristics such as reliabil-
ity, transparency or proximity. Finally, the environmental aspects
accommodate task-related attributes and team collaboration ele-
ments as in-group membership or shared mental models. Later,
based on this review of factors, Schaefer has developed a scale for
the measurement of human-robot trust covering this triadic model
of human, robot and environmental-related elements [17]. In rela-
tion to our work, the act of justifying a fault is associated to the
transparency factor, which is robot-related.

4 THE ROBOTIC PEER THAT PLAYS
TANGRAM

For the purpose of investigating the impact of recovery strategies
during a collaborative task, we chose to use a scenario based on
the Tangram game. This is a puzzle game that consists of putting
together seven shapes, named “tans”, in order to form more complex
shapes (see Figure 2). Participants interact with a NAO robot, taking
turns to solve the puzzle collaboratively. One of the reasons why
this particular game was chosen is due to its simplicity, based on
the advice of avoiding difficult and demanding tasks mentioned by
Sarkar et al. [16].

During the task, the decisions and behaviours of the NAO robot
are fully autonomous. This was achieved by relying on a Tangram
application previously developed [1], which was built on top of
SERA, a development ecosystem that merges techniques from com-
puter animation and social agents to allow for the creation and
animation of social robots [12]. The architecture of the resulting
system is illustrated in Figure 1. As shown, participants interact
using only a touchscreen interface and play the Tangram game
with the social robot. The game logic, the decisions of the robot and
the behaviour planner are divided into three separate components
that communicate with each other using a middleware system [11],
which are the Game Application, the Decision Maker and the Skene,
respectively. A final component, NAOThalamus, is used to interface
with the robot itself, through the NAOgqi framework, which includes
a text-to-speech component, a gaze module and all the animations
the robot can perform.
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Participant Touchscreen Decision NAO Robot
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Figure 1: The system architecture.

As previously mentioned, the robot and the participant play
the game collaboratively, where each one is allowed to move one
piece per turn. The robot’s verbal and non-verbal behaviour is
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Figure 2: Set of Tangram puzzles for the user study.

essentially focused on reflecting the progress made by the user.
The communication is asymmetric and in Portuguese. The robot
always starts with an utterance referring its turn and it randomly
chooses a piece to place in the puzzle. Then, it announces to the
participant his/her turn during which, if he/she has some trouble
rotating or placing the piece, the robot provides some advice or
hints. The robot also gives compliments after a move made by the
participant. To make the robot seem less predictable and artificial,
there is a random chance associated to the performance of each
behaviour. In the end of each puzzle, the robot celebrates with a
joyful utterance and gesture, and also announces the number of
puzzles that are left to finish the task.

Regarding the gaze of the robot, it always looks at the participant
while talking to him/her and looks at the touchscreen otherwise.
Moreover, the robot has no memory of previous moves or events. It
only knows the name of the participant in order to establish rapport.
This is introduced by the experimenter in the beginning and the
robot uses it in the middle of some utterances.

Finally, the puzzles chosen were the square, the cat and the chair,
in this order (Figure 2). The first puzzle was easy as the pieces were
already with the correct orientation and their final positions were
highlighted. For the second and third puzzles, only the outline of
the final shaped was highlighted and the pieces were not with the
correct orientation, making it harder to complete.

5 USER STUDY

Using the previously described scenario, a study was conducted to
analyse the impact of a technical failure by a social robot during a
cooperative setting.

5.1 Hypothesis

By trying to address how a technical failure affects the perception
of trust in the robot, we posed two hypotheses for the experiment,
as follows:

e Hypothesis 1 - A technical failure of a social robot in a
cooperative task will have a negative effect on the trust
towards the robot.

e Hypothesis 2 - A social robot that reveals transparency by
justifying a technical failure during a cooperative task will
mitigate the negative effect on the trust towards it.

5.2 Experimental Design

A between-subjects design was used in our user study, in which
participants had to play the Tangram game with a stationary NAO
robot (see Figure 3). We manipulated two variables: the recovery
strategy (justifying or not) and the failure consequence (restart
or continue). By justifying the fault, we aimed at associating the
recovery strategy to one of the robot-related factors that influence

trust, the transparency. By increasing the consequence of the failure
on the task, we aimed at creating a situation where the human is di-
rectly penalised, since the task was collaborative. Furthermore, this
manipulation is inspired by the fact that most real error situations
during user studies require the task to start again. Additionally,
there was a control group in which the robot did not fail at all.
Therefore, the study had a total of 5 conditions:

¢ Control Condition - The robot did not have a failure.

o Justification Strategy & The Task Continues - After the
failure, the robot attributes it to a technical problem. The
game continues from the same moment it stopped and the
participant can finish the task.

o Justification Strategy & The Task Restarts - After the
failure, the robot attributes it to a technical problem. The
progress of the game is lost and it restarts so that the partic-
ipant has to play from the beginning.

¢ No Recovery Strategy & The Task Continues - After the
failure, the robot says nothing. The game continues from the
same moment it stopped and the participant can finish the
task.

e No Recovery Strategy & The Task Restarts - After the
failure, the robot says nothing. The progress of the game is
lost and it restarts so that the participant has to play from
the beginning.

For the failure conditions, the simulation of the error occurred in
the middle of the third puzzle. While mentioning its turn, the robot
stutters in the middle of a sentence saying “It’s myyyyyyyyyyy”
and then freezes for 50 seconds. After that, the game application
presents one of two possible responses: continue or restart — corre-
sponding to the manipulation of the failure consequence. In each
of these groups, one of two possible recovery strategies can be
presented — the robot justifies the failure by saying the sentence
“There was a failure in my speech module. Let’s continue/restart”
or it says nothing.

Regarding the two conditions with the more severe failure con-
sequence, i.e. when the robot needs to restart, participants played
the same sequence of puzzles in the same order. After restarting,
although the robot randomly selects the pieces and each puzzle
may have a different order of moves, the remaining behaviours
occur in a similar manner.

5.3 Experimental Procedure

Participation in the study was individual. The experiment was
divided in 3 phases. The first consisted of having participants filling
in the initial questionnaire related to their expectations of the robot
before they interacted with it. The second experimental phase was
to play a set of three Tangram puzzle games with the NAO robot on
a touchscreen (see Figure 3). Finally, in the last phase, participants
repeated the questionnaire they did at the start. Participants were
also informed that they would stay alone in the room and were
expected to leave at the end of the experiment or in case they
wanted to interrupt the experiment.

5.4 Dependent Measures

Two dependent measures were used on the data analysis:



Figure 3: Participant playing a Tangram game with NAO ro-
bot on the touchscreen.

e Trust was accessed with the 14-items subscale of the Human-
Robot Trust Questionnaire [17] in two time points, before
and after the interaction with the robot. The assessment of
the trust before the interaction was used as a covariate to
measure the effect of the failure. The decision to use the
14-items subscale is due to the fact that it is focused on the
functional capabilities of the robot.

o Impact of the failure on the task was accessed on a single
item question (“Identify the impact of the failure on the task”)
with a Likert scale ranging from 1 (“Not severe”) to 5 (“Very
much severe”).

5.5 Participation

The study was conducted at a Portuguese university and there
was a total of 107 participants in the experiment. Five participants
were excluded due to an unexpected technical failure in the system
during the interaction with the robot. One more participant was
excluded given that he left the room to ask for support immediately
after the robot’s failure, leading him not to hear the recovery of the
robot. We also identified and excluded four outliers regarding the
trust levels using a step of 1.5 x IQR (interquartile range), leaving
us a total of 97 participants (71 males and 26 females) with ages
ranging from 17 to 41 years old (M = 22.26 + 4.51). We tried to
balance around 20 per condition: 16 in the control condition, 38 in
the group where the task continues (18 in the Justification Strategy
condition; 20 in the No Recovery Strategy) and 43 in the group
where the tasks restarts (21 with Justification Strategy; 22 with No
Recovery Strategy).

6 RESULTS

Initially, we conducted a reliability analysis (Cronbach’s «) to as-
sess the internal consistency of the 14-items subscale by Schaefer
[17]. Since the reliability was too low (o = 0.46), we excluded the
two most inconsistent items, which were “Dependable” and “Pre-
dictable”. Without them, the internal consistency became acceptable

(a = 0.72). Therefore, the following results reporting trust levels
refer to this 12-items subscale. Furthermore, a normality analysis
was conducted, which revealed that the dependent variable of trust
did not follow a normal distribution (Shapiro-Wilk test). We also
verified the homogeneity of variances assumption ANOVA grounds
on with the Levene’s test and it was not significant (p=0.998).

6.1 Manipulation Check

By applying the Mann-Whitney test, we observed that the manipu-
lation of “restarting” caused a significant difference (Figure 4) on
the impact on the task caused by the failure (U = 394;p = 0.001;
r = 0.38). The failure was perceived to have less impact in the
group where the game continues after the robot’s failure (M =
1.90 + 0.72) when compared to the group where the game restarts
(M = 2.74 £ 1.11).

5

w ~
3 g

Perceived Impact on the Task
&
Cr

Continue Condition Restart Condition
Figure 4: Differences in the perceived impact on the task
caused by the failure when the game continues and restarts.
(*p = 0.001)

6.2 Effect of the Failure

A 1-way ANOVA test was applied to analyse the overall effect of
the robot failing. We compared the participants’ trust towards the
robot when it failed and when it did not, controlling for the trust
levels reported before the interaction. Results showed a significant
difference (F = 12.97;p = 0.001). As shown in Figure 5, participants
in the group where the robot did not fail showed higher trust levels
towards the robot (M = 90.94 + 7.93) than the group where the
robot failed (M = 84.28 + 9.60).

6.3 Effect of Recovery Strategy

To analyse the impact on the trust of the recovery strategy for the
conditions where the robot fails, we used a Factorial ANOVA test
after applying a rank transformation to the data. There was no sig-
nificant main effect for the recovery strategy (F = 1.25;p = 0.268)
nor for the failure consequence (F = 1.14;p = 0.288). However, we
found a significant interaction effect between these two variables
(F = 4.17;p = 0.045).
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Figure 5: Difference in the trust levels towards the robot
when there was a failure and when there was not. (*p = 0.001)
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Figure 6: The effect of the recovery strategy at individual
levels of the failure consequence. (*p = 0.033)

Consequently, we conducted a simple effects analysis by looking
at the effect of the recovery strategy at individual levels of the
failure consequence (Figure 6), using a Mann-Whitney test. For the
group with the less severe failure where the task continues, the trust
levels were significantly different between the recovery strategies
(U = 107;p = 0.033; r = 0.35). More precisely, in the case where the
robot justified its failure, the trust was significantly higher (M =
88.89 + 7.63) than in the case where it did not justify (M = 82.58 +
8.77). However, for the group with the most severe failure where the
task restarts, there was no statistically significant difference (U =
201.5;p = 0.473) on the trust between the justification recovery
strategy (M = 81.43 +11.54) and the no recovery strategy condition
(M = 84.76 + 8.83).

6.4 Failure Mitigation

An additional statistical analysis compared the trust levels in the
control condition and each of the failure conditions, using a Mann-
Whitney test. The trust levels were significantly different between
the control condition and: (1) the no recovery strategy where the
task continues (U = 77;p = 0.007); (2) the justification strategy
where the task restarts (U = 88.5;p = 0.013); (3) the no recovery
strategy where the task restarts (U = 108; p = 0.045). However, the
difference between the trust levels in the control condition and the
justification strategy where the task continues was not statistically
significant (U = 119.5;p = 0.403).

7 DISCUSSION

Our results support Hypothesis 1, reflecting the negative impact
of faulty robot’s performance in the trust level towards it.

Moreover, we extend the findings of Lee et al. [7] and Salem et al.
[15] by analysing a different type of failure and recovery strategy
during a cooperative game, where the robot has the role of a peer.

According to Hypothesis 2, we expected the recovery strategy
of justification to reveal transparency from the robot and conse-
quently mitigate the negative impact of its technical failure. This
was partially confirmed by the interaction effect of both the recov-
ery strategy and the task impact on the trust levels. Additionally,
the trust levels were significantly different between the control
and each one of the other conditions, except for the justification
strategy where the task continues. This recovery strategy was able
to mitigate the negative impact on the trust levels when the fail-
ure’s consequence was less severe by continuing the game. On
the contrary, when the failure’s consequence was more severe and
participants had to restart the task from the beginning, the recov-
ery strategy of justifying the failure was not able to mitigate its
negative impact on trust.

We believe the recovery strategy of justifying the failure was
weak for the case of restarting the task. Especially due to the coop-
erativeness of our setting, in which this consequence affected the
participants’ progress in the task. Also, other findings from social
psychology, relating to the specific recovery strategy of apologis-
ing, revealed that extensive apologies are required to mitigate more
severe harms [9].

8 CONCLUSION AND FUTURE WORK

Our work shows the negative impact of a technical failure on trust in
a collaborative setting and how the fault justification as a recovery
strategy can mitigate this negative impact.

Our main contribution lies on a user study with an in-person
interaction with a fully autonomous robot that executes a recovery
from a technical failure. This is particularly important in applica-
tions with autonomous robots, which should also be able to recover
from failures autonomously. We investigated the effect of two differ-
ent consequences for the failure, continuing or restarting the task,
which is inspired in real-world situations where, almost inevitably,
there are errors that require the task to restart. Furthermore, we
investigated the effect of a recovery strategy that was not yet ex-
plored in human-robot trust research, where the robot justifies
the failure (or ignores it) and is therefore associated to a more (or
less) transparent agent. Due to the fact that the robot simulates



awareness of the failure’s cause and can consequently simulate
an autonomous recovery, such recovery strategy is perceived as
natural.

Our results have shown that faulty behaviour by a social ro-
bot during a cooperative task, such as a puzzle game, is indeed
perceived as less trustworthy. However, our main result indicates
that justifying the failure as a recovery strategy can mitigate its
negative impact on the trust, but only when the consequence of the
failure is less severe. On the other hand, when the failure is more
severe, the recovery strategy has no effect on the trust. This might
happen because of a higher expectation from the participants for
the recovery strategy, where only a justification may be perceived
as inconvenient.

We believe our results can be generalised for similar low-risk
and cooperative situations, such as conversational, entertainment
or companion robots. Every situation that compromises the trust
towards a social robot must be addressed, which according to the
human-robot trust definition, happens when there is a discrepancy
between the robot’s perceived intention and its actions. Therefore,
these findings can be a valuable lesson when developing robots in
HRI scenarios, and we hope they can contribute to the development
of more reliable and trustworthy robots, which reveal recovery
strategies capable of mitigating the negative effect of possible fail-
ures. More importantly, our results also point to the fact that miti-
gation strategies should be tailored according to different factors,
such as task type, failure type and failure severity.

However, being able to detect that there was an error is still
tricky. Only in the case where the system can detect that there was
some fault, it makes sense that the robot can recover and apply
the correct strategy. Another point worth mentioning is that some
participants might have perceived the justification of the robot as a
mere acknowledgement, which could have been disambiguated by
a manipulation check in the questionnaire.

As future work, we plan to improve our study and develop a
robot using adaptive models where it changes its recovery strategy
accordingly to the failure severity. In terms of type of failure, we
also aim to explore the use of task-related failures instead of only
technical. It would also be interesting to explore what the effect is
regarding the trust of using recovery strategies that include some
emotional content.
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