EMYS: A SOCIAL ROBOT THAT PLAYS "SUECA"

OUTLINE

- 1. Motivation
- 2. Goals
- 3. Background
- 4. Related Work
 - a. Al in Games
 - b. HRI
- 5. Proposed Architecture
- 6. Evaluation
- 7. Conclusion

2. GOALS

GOALS

Integrate a social robot with aged humans in a card game scenario

- Develop an agent that plays competently *Sueca*
- Develop a socially present embodied agent
- Evaluate the correctness of the system

Hidden information?

Information Set!

Monte-Carlo Tree Search

- 1. Selection
- 2. Expansion
- 3. Simulation
- 4. Backpropagation

4. RELATED WORK

4.1. AI IN GAMES

Solving hidden information games...

- Monte-Carlo Methods
- Nash-Equilibrium Strategy
- Belief distributions

Solving hidden information games...

- Monte-Carlo Methods
- Nash-Equilibrium Strategy
- Belief distributions

MONTE-CARLO METHODS

How to deal with hidden information?

MONTE-CARLO METHODS

PIMC

Domains	Pros / Cons	Hidden Information	
Bridge Skat	 Simpler to implement Strategy fusion Non-locality 	Determinization	

MONTE-CARLO METHODS

ISMCTS

Domains	Pros / Cons	Hidden Information	
Dou Dizhu	 Computational Budget Strategy fusion (less) Non-locality Harder to implement 	Information Set	

MONTE-CARLO METHODS

IIMC

Domains	Pros / Cons	Hidden Information
Skat	 Player Module Strategy fusion (less) Non-locality Harder to implement 	Recursive Determ.

BELIEF DISTRIBUTIONS

Domain	Technique	Goal	Suitable
Skat	Determine the winning probability of a hand	Improve the bidding	N
Skat	Fastest-cut-first heuristic	Order moves	Y
Skat	Considering similar states equally	Reduce tree exploration	Y
Skat	Calculate the mistake rate of each player	Improve the bidding	~
Poker	Opponent model	Improve MCTS policies	Y

4.2. HRI

Integrate a social robot with aged humans in a card game scenario

Robots in elderly care

Social robots in games

ROBOTS IN ELDERLY CARE

ROBOTS IN ELDERLY CARE

ROBOTS IN ELDERLY CARE

SOCIAL ROBOTS IN GAMES

- Children tutor
- Careful advices
- Long-term interactions

SOCIAL ROBOTS IN GAMES

Improved social presence:

- Topology of speeches
- Relevance value of a move
- Power of a player
- Simulation of roles
- Luck perception

5. PROPOSED ARCHITECTURE

PROPOSED ARCHITECTURE

PROPOSED ARCHITECTURE

AI MODULE

- PIMC
- Opponent model
 - Cards' predictions
 - Actions' predictions

How to collect data?

- Ask for it
- Collect it! (it requires a platform)

6. EVALUATION

EVALUATION

Develop an agent that plays competently Sueca

Performance measures

- Game points
- Offline pre-computation time

- These measures will be compared to different parametrizations and a naive approach
- University community will test it

EVALUATION

Develop a socially present embodied agent

Two conditions

- Few or nonexisting social behaviours
- Several behaviours from the game state

- The elderly will test it
- Godspeed participants' perception of the robot
- Networked Minds presence perception

THANK YOU!